5. El pensamiento aleatorio y los sistemas de datos.

Este tipo de pensamiento, llamado también probabilístico o estocástico, ayuda a tomar decisiones en situaciones de incertidumbre, de azar, de riesgo o de ambigüedad por falta de información confi able, en las que no es posible predecir con seguridad lo que va a pasar. El pensamiento aleatorio se apoya directamente en conceptos y procedimientos de la teoría de probabilidades y de la estadística inferencial, e indirectamente en la estadística descriptiva y en la combinatoria. Ayuda a buscar soluciones razonables a problemas en los que no hay una solución clara y segura, abordándolos con un espíritu de exploración y de investigación mediante la construcción de modelos de fenómenos físicos, sociales o de juegos de azar y la utilización de estrategias como la exploración de sistemas de datos, la simulación de experimentos y la realización de conteos.
 
El azar se relaciona con la ausencia de patrones o esquemas específi cos en las repeticiones de eventos o sucesos, y otras veces con las situaciones en las que se ignora cuáles puedan ser esos patrones, si acaso existen, como es el caso de los estados del tiempo; de la ocurrencia de los terremotos, huracanes u otros fenómenos de la naturaleza; de los accidentes, fallas mecánicas, epidemias y enfermedades; de las elecciones por votación; de los resultados de dispositivos como los que se usan para extraer esferas numeradas para las loterías y de las técnicas para efectuar los lanzamientos de dados o monedas o para el reparto de cartas o fi chas en los juegos que por esto mismo se llaman “de azar”.
 
En las experiencias cotidianas que los estudiantes ya tienen sobre estos sucesos y estos juegos, empiezan a tomar conciencia de que su ocurrencia y sus resultados son impredecibles e intentan realizar estimaciones intuitivas acerca de la posibilidad de que ocurran unos u otros. Estas estimaciones conforman una intuición inicial del azar y permiten hacer algunas asignaciones numéricas para medir las probabilidades de los eventos o sucesos, así sean inicialmente un poco arbitrarias, que comienzan con asignar probabilidad 0 a la imposibilidad o a la máxima improbabilidad de ocurrencia; asignar ½ a cualquiera de dos alternativas que se consideran igualmente probables, y asignar 1 a la necesidad o a la máxima probabilidad de ocurrencia.